
 Unsupervised Adaptation to Improve Fault Tolerance
of Neural Network Classifiers

Alex Nugent, Garret Kenyon1 and Reid Porter
Space Data Systems Group, Bio-Physics Group1

Los Alamos, NM 87545
Email contact: rporter@lanl.gov

Abstract

We investigate how to exploit the dynamics of
unsupervised online learning rules for fault tolerance in
neural network classifiers. We first design an adaptation
mechanism that keeps neural network weights at a useful
fixed point for classification problems. We then
demonstrate the robustness of the system when the
network inputs are subjected to faults.

1 Introduction

There are at least two scenarios where traditional fault
detection and mitigation schemes appear insufficient:
extreme environment electronics and computing with
next-generation nano-scale devices. These have been
significant application drivers for the evolvable hardare
community. Haddow and Remortel ask the question [1]:
can adaptive systems that maintain a chemical state of
equilibrium provide the basis for robust, fault tolerant
evolvable hardware? In this paper we investigate this
concept within the framework of artificial neural
networks. We will design an adaptive algorithm that
maintains equilibrium for a neural network classifier and
then demonstrate how it can help increase fault tolerance.

For applications like image and signal processing and
real-time control, artificial neural networks, due to their
distributed cellular architecture, can provide natural
solutions for computing with fault prone devices. Some
neural network architectures use system dynamics to solve
computational problems e.g. associative memories and
self-organizing maps. Solutions are represented as minima
and the convergence of the system effectively provides
self-organized fault tolerance [4].

In this paper we suggest how self-organized fault
tolerance might be introduced into a wider class of
application. Instead of requiring the network dynamics to
directly encode the desired computation, we observe that
the dynamics need to only include the desired

computation as a local minimum. We use the initial
conditions to bootstrap the system to the desired
minimum. The basin of attraction for the minimum then
provides self-organized fault tolerance.

We develop the approach for two-class classification
problems. There are two modes of operation. First there is
a design stage, where we use training data and supervised
learning to find a good set of network weights for solving
classification problems. Second there is a online stage
where we imagine the network is deployed and classifies
incoming data, one sample at a time. In the online stage
we replace the static network weights of the supervised
classifier with a dynamic update mechanism. During
normal operation this mechanism maintains a stable
equilibrium around the static network weights. When the
neural network is subject to faults the mechanism can
adapt weights to maintain performance.

2 Neural network classifiers

We use a Radial Basis Function (RBF) neural network
illustrated in Figure 1 to solve classification problems.

There are d first layer nodes. The thi first layer node
implements a Gaussian radial basis function with a fixed
center ic and fixed width λ :

 ix e
λ− −

= ic u
 (1)

In the second layer there is a single node, which
implements a weighted sum of first layer outputs:

1

d

i i
i

y w x b
=

= −∑ (2)

The sign of the network output determines which class the
sample will be assigned:

 ()z sign y= (3)
In the online stage faults are introduced into first layer

nodes and the output node is assumed fault free. There are
two types of faults that occur in 1st layer nodes:

• Static faults cause a node to output a constant value
regardless of its input. This value is chosen randomly
from a uniform distribution between 0 and 1.

• Dynamic faults cause the node to output a random
value between 0 and 1 at each time step.

The assumption that the output node is fault free is based on
the two layer network being used as part of a much larger
multi-layered system. If this is the case, faults in the output
node could be dealt with by applying our strategy to
subsequent layers i.e., the output node becomes a first-layer
node.

Figure 1. Network classifier used in experiments

3 Dynamics of unsupervised online learning

Our goal is to find an adaptation mechanism for
updating the output node weights that can help account for
the first layer faults. We investigate adaptation
mechanisms with the general form:

 (), ,iw f yα∆ = w x (4)

where iw∆ is the change in the thi weight from one time

step to the next, α is a small constant and ()f i is some

function that depends on quantities that are local

(physically) to the thi weight. A useful framework for
analyzing this type of update is stochastic gradient ascent

of an objective function ()J y , in which case (4) can be

expressed as:

 ()i
i

d
w J y

dw
α∆ = (5)

We denote the derivative of ()J y with respect to y as

()g y , and the update is:

 ()T
i iw x gα∆ = w x (6)

Oja [2] was one of the first to suggest this type of rule
for finding interesting statistical structure in data.
Recently higher-order objective functions have been
suggested, motivated from a number of fields including
statistics [3], information-theory [4], and biology [5].
These objective functions have multiple local maxima and
learning rules converge to one of many fixed points. We
suggest that the multiple fixed points of higher-order
learning rules can provide a novel mechanism for fault
tolerance. The basic assumption is that an objective
function can be found that is related to, at some level, the
desired behavior for the output node. If this is the case
then it follows:
• The adaptation mechanism will be in a local fixed point

close to the desired value of w and hence will maintain a
stable equilibrium during normal operation.

• With faults present, the input statistics will shift the
local fixed point and in some cases the adaptation
mechanism will track this shift appropriately.
A classifier aims to separate inputs into one of two

classes. Therefore we suggest a reasonable objective
function would measure multi-modality. Several objective
functions have been suggested that measure multimodality
[6]. We choose to minimize the fourth-order cumulant, or
kurtosis:

 () { } { }24 23J y E y E y= − (7)

The weight vector w must be bound to produce a
stable learning rule. One way to do this to place a
constraint on the variance:

 { }2 1E y = (8)

This constraint can be included in the stochastic ascent
learning rule by introducing a penalty term:

 () { }() { }4 23J y E y E yβ= − − (9)

Take the derivative of (9) with respect to y ,

substituting into (6) and multiplying by -1 (since we want
the learning rule to minimize kurtosis) we arrive at

 ()2
i iw x y B Ayα∆ = − , (10)

where A and B are constants. The learning rule (10) is a
generalized Hebbian learning rule, which we call Anti-
Hebbian and Hebbian (Ahah!).

4 Detailed Experimental Design

4.1 Design Stage

In the design stage we use supervised learning and a
training set to estimate the parameters for the RBF

network in Figure 1. The training set consists of N
samples. For each sample there is an input vector u and a

class label { }-1,1l ∈ . The training data is divided into 3

sets. Half of the samples are used during the online stage
as a test set. The remaining samples are divided into two
sets: training and validation. We use a Support Vector
Machine (SVM) for the supervised learner [7]. This
provides the number and location of centers ic in

equation (1), as well as the weights w and b of equation
(2). Using cross-validation we also choose the SVM free
parameters including the Gaussian width λ in (1) and the
level of regularization.

In the design stage we also set the Ahah rule constants
A and B . These constants control the fixed point scale

and therefore must be initialized close to the scale found
by the supervised learner. We set 1A = and average
B over all inputs, where the expectation is taken over the
training data:

3

1

1 d
i

i i

x y
B

d x y=

= ∑ (11)

The update for the output node bias in (2) also uses (10)
but has a constant input, 1x = − .

 2()b y B yα∆ = − (12)

4.2 Online Stage

During the online stage we randomly select one sample
at a time from the test set and provide it as input to the
RBF network. The network predicts a class label for the
sample and we compare it to the desired label to estimate
network performance over time. At a certain point some
of the RBF nodes become faulty. In this paper we report
on incremental failures where only one node becomes
faulty at any one time but faulty nodes accumulate until
the desired percentage of faulty nodes is attained. We
compare three scenarios as faults are introduced:

1. Normal: For each sample the RBF network simply
predicts the class label for the input. The network makes
no attempt to account for newly occurring faults.

2. Ahah: For each sample the RBF network predicts the
class label for the input and then updates each weight in
equation (2) according to equation (10).

3. Retrain: After faults occur we retrain the weights in
equation (2) and then predict future samples with the re-
optimized classifier.

4.3 Retraining

The third scenario is used as an estimate for the best we
can hope to achieve. To retrain, the original training and
test sets are supplied as input to the faulty first layer. For

each sample u we record the (possibly faulty) RBF
outputs x producing a new training and test set. There
are a number of supervised learning methods that could be
used to re-optimize w and b based on the new training
set. We use a linear program that uses the sum of absolute
values as a weight regularizer instead of the sum of
squares used by the SVM. This is preferred since the
faults we introduce are specific to particular nodes. When
using the sum of absolute values for regularization the
weights corresponding to faulty input nodes will tend to
be set to zero more easily than if we used the sum of
squares for regularization [7].

5 Experimental Results

We generated a synthetic two-class, two-dimensional
exclusive-or problem for initial experiments. Gaussian
centers for each class are located along the diagonals of

the input space: ()1 2[,] 1, 1x x = ± ± . All Gaussians have

a variance of 0.5. We use 200 samples for both training
and validation sets. For the test set we continue to draw
new samples as required (typically 8000).

Incremental dynamic faults were introduced according
to a linear schedule between time steps 2000 and 6000.
We take the average classification error (a running
average over 300 time steps) between 7000 and 8000 and
then averaged the result over 10 trials. For the retraining
scenario we re-optimized the network at time step 6500.
Note that this is a best-case scenario, particularly when
faults are introduced incrementally

Figure 2. Gradual fault introduction of dynamic
faults in x-or classification network

In Figure 2 we observe that retraining had poorer
performance than doing nothing for low levels of faults. It

is likely a more thorough search for the optimal level of
regularization during supervised learning would lead to
more similar performance. For Ahah, the result in figure 2
is typical and the adaptation mechanism provides a
substantial degree of fault tolerance. This was found for
both static and dynamic faults.

We repeated the experimental setup described for real-
world data obtained from the UCI Machine Learning
repository [8]. We used the Ionosphere data set containing
34 attributes and 351 samples. Of the 351 samples
approximately 70% belong to one class and therefore in
Figure 3 the maximum error is approximately 0.3. We
resample the 175 test samples with replacement to obtain
8000 online training points. In Figure 3 we observe Ahah
again provides a substantial degree of fault tolerance.

Figure 3. Gradual introduction of static faults in
Ionosphere classification network

6 Discussion

In comparison to retraining, our approach has several
advantages. Retraining must take the system offline in
order to pass the training data through the faulty
processing nodes. In addition, the learning rule itself is
often complicated (such as a Linear Program) and may
require a microprocessor and additional memory. In
contrast, our unsupervised approach can be applied
without taking the system off-line and has far fewer fault
prone control mechanisms. In addition, it may be possible

that the update term 2b ay− can be implicitly calculated
by using a specific nonlinearity (3) [3].

Another advantage of our approach is rapid response to
newly occurring faults. The performance of retraining will
depend on how often the faults occur and how often the
retraining can occur. If retraining is seldom then the
system may suffer long periods of poor performance. If

retraining is over-scheduled then computational resources
will be wasted

For a practical system, it is likely that coupling the
unsupervised approach with retraining and/or more
traditional fault detection strategies will be desirable. The
unsupervised approach can provide fast response to new
faults with little computational overhead. A supervised
fault detection system could then detect operating
conditions outside of the systems specification and
provide mechanisms to reinitialize the unsupervised
system as required.

7 Conclusion

We have suggested using the dynamics of an online
learning rule to implement a form of self-organized fault
tolerance. We showed that local minima of a multimodal
objective function based on kurtosis can coincide closely
with classifiers trained with supervised learning. We
showed that the basins of attraction for these local minima
can improve fault tolerance. Future research aims to
develop and apply this concept to larger multi-layered
neural network architectures.

Acknowledgments

This research was supported by the Los Alamos
National Laboratory’s Directed Research project: Scalable
Reconfigurable Computing.

References

1. Haddow, P.C. and P.v. Remortel. From Here to There:
Future Robust EHW Technologies for Large Digital Designs.
in The Third NASA/DoD Workshop on Evolvable Hardware.
2001. Long Beach, California.

2. Oja, E., A simplified neuron model as a principal component
analyzer. Journal of Math. Biology, 1982. 15: p. 267-273.

3. Hyvarinen, A., J. Karhunen, and E. Oja, Independent
Component Analysis. Adaptive and Learning Systems for
Signal Processing, Communications and Control, ed. S.
Haykin. 2001, New York: John Wiley & Sons, Inc.

4. Bell, A.J. and T.J. Sejnowski, The `Independent Components'
of Natural Scenes are Edge Filters. Vision Research, 1997.
37(23): p. 3327-3338.

5. Intrator, N. and L.N. Cooper, Objective function formulation
of the BCM theory of visual cortical plasticity, Neural
Networks, 1992. 5(1): p. 3-17.

6. Dotan, Y. and N. Intrator, Multimodality Exploration by an
Unsupervised Projection Pursuit Neural Network. IEEE
Trans. Neural Networks,, 1998. 9(3).

7. Hastie, T., R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning. Springer Series in Statistics, ed.
Springer. 2001: Springer-Verlag

8. V. Sigillito. UCI Machine Learning Repository,
http://www.ics.uci.edu/~mlearn/MLRepository.htm.

